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The Closed Systems View

In standard quantum mechanics, one considers closed systems, i.e.
systems which are perfectly isolated from their environment. The
resulting dynamics is unitary.

This is an idealization as physical systems cannot be perfectly isolated
from their environment (apart, perhaps, from the whole universe).

However, the idealization often works remarkably well. For example,
the Standard Model of particle physics is very well confirmed.

This supports. . .

The Closed Systems View

Closed systems are fundamental and any system under consideration is
represented as a closed system.
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The Open Systems View

The closed systems view is deeply entrenched in the methodology of
physics: even if open systems (such as lasers) are considered,
physicists have developed powerful methods to model the effects of
the environment in a closed-system framework.

The same holds for philosophy of physics: there is almost no work
that focuses on philosophical problems of open (quantum) systems.

To change this unfortunate situation, the goal of this talk is to
articulate and defend. . .

The Open Systems View

Open systems are fundamental and any system under consideration is
represented as an open system.

On this view, the fact that the system of interest interacts with the
external environment is essential to our description of the system.
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What do we mean by “fundamental”?

Here are three necessary conditions for a fundamental theoretical
description.

1 Let S be a set of phenomena that is accounted for by two different
theories, viz. TF and TP . TF is more fundamental than TP for S if it
is less idealized than TP .

2 The fundamental dynamical laws describing a system’s evolution
should not depend for their validity on the system’s initial state.

3 The ability to uncover the causal structure of a system through
empirical testing is a fundamental demand one might make on any
physical theory.
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I. Open Quantum Systems
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The Liouville-von Neumann Equation

Consider the Schrödinger equation for a pure quantum state |ψ >:

i|ψ̇ >= H |ψ >

Introduce the density operator ρ := |ψ >< ψ|. Then the Schrödinger
equation implies the Liouville-von Neumann equation:

ρ̇ = −i [H, ρ]

Introducing the superoperator Luρ := −i [H, ρ], the Liouville-von
Neumann equation can also be written in the form

ρ̇ = Luρ,

which resembles the classical Liouville equation. Lu governs the
unitary dynamics of the system.
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Mixed States

Consider a system which is with a probability pi in the pure state
|ψi > with pi < 1 and i = 1, . . . , n.

The physics of this system can be accounted for by the density
operator

ρ =
n∑

i=1

pi |ψi >< ψi | .

Note that this state cannot (in general) be expressed in terms of a
wave function and there is no Schrödinger equation that describes the
dynamics of the corresponding system.

Once ρ is specified, experimentally observable expectation values can
be computed: < A >= Tr(Aρ).
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Coupled Systems

Consider a quantum system S which is coupled to a reservoir R:

|Ψ >=
1√
2

(|u > |Ru > +|d > |Rd >)

with the orthogonal states |u > and |d > for S and the orthogonal
states |Ru > and |Rd > for R.
The corresponding density operator ρ := |Ψ >< Ψ| is given by

ρ =
1

2
(|u >< u| ⊗ |Ru >< Ru|+ |u >< d | ⊗ |Ru >< Rd |

+ |d >< u| ⊗ |Rd >< Ru|+ |d >< d | ⊗ |Rd >< Rd |)
We are only interested in S and are ignorant about the state of R.
Hence, we average over the values of R (“partial trace”) and obtain
the reduced density operator P for S:

P = TrR|Ψ >< Ψ|

=
1

2
(|u >< u|+ |d >< d |)
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Upshot

Note that the formalism presented so far takes closed systems as
basic: S +R is closed, and the composite system is accounted for by
a wave function.

One then derives the effective dynamics of the reduced system taking
into account that we are ignorant about the state of the reservoir.
This requires the specification of a density operator (and not a wave
function).
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II. The Lindblad Equation
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Master Equations in Quantum Optics

Open systems features such as dissipation and pumping play a crucial
role in standard quantum optical applications such as lasers. They are
also ubiquitous in quantum information theory.

There are successful semiclassical theories (bases, e.g., on the
Fokker-Planck equation), but an account that also works e.g. for
small atom numbers requires a full quantum mechanical treatment: A
proper quantum theoretical account requires that the environment is
modeled quantum mechanically.

Systems of this kind are (typically) described by a Markovian
quantum master equation of the Lindblad form.

There are two distinct ways to derive the Lindblad equation:
1 A microscopic and specific derivation which has to be carried out for

each type of system under consideration.
2 A general and abstract derivation which does not relate directly to a

particular system.
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Derivation 1

We consider a specific quantum system S (here: a two-level atom) which
is coupled to an environment R and make the following assumptions:

1 The total Hamiltonian is given by H = HS + HR + HSR .
2 S and R are initially uncorrelated and weakly coupled (i.e. S does

not affect the state of R).
3 The Born-Markov approximation.

We then “trace out” the environment and arrive at the following equation
for the reduced density operator P describing the non-unitary dynamics in
the quasi-spin formalism:

The Lindblad Equation for a 2-level Atom

Ṗ = −A (σ+σ− P + P σ+σ− − 2σ− P σ+)

−B (σ−σ+ P + P σ−σ+ − 2σ+ P σ−)

The basis states are |1 >= (1, 0)T and |0 >= (0, 1)T and the Pauli
matrices σ± represent the corresponding raising and lowering operators.
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Some Remarks

This equation is an instance of the general Lindblad equation which
has the form

The Lindblad Equation

Ṗ = −i [H,P] +
1

2

∑
i

(
[Li P, L

†
i ] + [Li ,P L†i ]

)
.

Here the superoperators Li have to be bounded and
∑

i L
†
i Li = 1.

A similar equation can be microscopically derived for other dynamics
(e.g. for the radiation field).

Note that the Lindblad equation implies that TrṖ = 0, which
guarantees probability conservation.
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Derivation 2

This derivation is very general and abstract.

References:
1 G. Lindblad: On the Generators of Quantum Dynamical Semigroups.

Commun. Math. Phys. 48 (2): 119 (1976).

2 V. Gorini, A. Kossakowski and E.C.G. Sudarshan: Completely Positive
Semigroups of N-Level Systems. J. Math. Phys. 17 (5): 821 (1976).
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Derivation 2

We consider the general dynamical equation

ρ̇ = Lρ.

This equation has the formal solution

ρ(t) = Φt ρ(0),

Three conditions on the map Φt (more on these later):

1 Φt is linear (uncontroversial).

2 Φt is completely positive.

3 Φt has the semigroup property, i.e. Φs Φt = Φs+t and Φ0 = 1.
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Derivation 2

Theorem

A linear map Φt that satisfies complete positivity and has the semigroup
property is of the Lindblad form.

Note:

The proof of the theorem crucially relies on a result by Kraus
according to which a map Φ is completely positive iff
Φ(X ) =

∑
L†i X Li with bounded operators Li that satisfy∑

L†i Li = 1.

The derivation does not tell us how to construct the generators for a
concrete physical situation. (But note that the Schrödinger equation
also does not tell us what the Hamiltonian is.)

Important: Probability is conserved also in the case of a non-unitary
time evolution.
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Upshot

The Lindblad equation contains more physics than the Schrödinger
equation (which obtains in a limit).

Which set of superoperators Li is used depends on the specific
physical application under consideration.

The general form of the quantum master equation for the reduced
density operator P is

Ṗ = (Lu + Ln.u.)P.
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III. Intermezzo: Generalized Dicke States and SU(4)

Reference:

S. Hartmann: Generalized Dicke States. Quantum Information and
Computation 16, No. 15 & 16: 13331348 (2016); arXiv:1201.1732v2
[quant-ph]
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Motivation

I would like to show that it is (at least sometimes) computationally
advantageous if one does not take the non-unitary dynamics of a
systems only as a disturbance to a unitary dynamics but starts the
investigation from a consideration of it.

More specifically, I am interested in solving quantum master
equations for a finite number of two-level atoms (or qubits).

Ṗ = −i [H,P] + Ln.u. P .

P is the reduced density operator of the system, H is the Hamiltonian
that governs the unitary dynamics, and Ln.u. is a superoperator that
describes the non-unitary (resonator mode and atomic) dynamics.

Such equations are used to address a variety of problems from
quantum optics, such as the description of laser systems.

In quantum information theory, equations of this form are used to
study the decoherence of entangled quantum states.
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For a finite number Z of 2-level atoms, the atomic non-unitary
dynamics is of the Lindblad form:

L(Z)
σ P = − B

2
(1− s)

Z∑
i=1

[σ
(i)
+ σ

(i)
− P + P σ

(i)
+ σ

(i)
− − 2σ

(i)
− Pσ

(i)
+ ]

− B

2
s

Z∑
i=1

[σ
(i)
− σ

(i)
+ P + P σ

(i)
− σ

(i)
+ − 2σ

(i)
+ Pσ

(i)
− ]

Note: the microscopic derivation presupposes that each atom is
coupled to a reservoir.

σ
(i)
± and σ

(i)
3 are the usual Pauli matrices, acting on atom i whose

states are represented by |1 > or |0 >.

B is a decay constant and s is the pumping parameter. It varies from
s = 0 for pure damping to s = 1 for full laser action.
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My Goal. . .

. . . is to find atomic basis states that can be used to solve quantum
master equations that involve such non-unitary terms.

To achieve this goal, I take an algebraic approach.

The basic idea is to take the non-unitary part seriously and start from
it. That is, we do not take the non-unitary part (as usual) as a
disturbance on top of the (supposedly dominant) unitary dynamics.
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Superoperators

We define:

Q± P :=
Z∑
i=1

σ
(i)
± P σ

(i)
∓ , Q3 P :=

1

4

Z∑
i=1

(
σ

(i)
3 P + P σ

(i)
3

)
These operators satisfy the SU(2) commutation relations:

[Q+,Q−] = 2Q3

[Q3,Q±] = ±Q±

Next, we define the quadratic (Casimir) superoperator

Q2 = Q−Q+ +Q2
3 +Q3

and obtain
[Q2,Q3] = 0 .
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More Superoperators

We define another set of superoperators:

Σ± P :=
Z∑
i=1

σ
(i)
± P σ

(i)
± , Σ3 P :=

1

4

Z∑
i=1

(
σ

(i)
3 P − P σ

(i)
3

)
They also satisfy the SU(2) commutation relations:

[Σ+,Σ−] = 2 Σ3

[Σ3,Σ±] = ±Σ±

Note also that
[Qi ,Σj ] = 0 ∀i , j ∈ {±, 3},

i.e. the su(2)-subalgebras for Q and Σ are “orthogonal”.
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And More Superoperators

M± P :=
Z∑
i=1

σ
(i)
± P

1 + σ
(i)
3

2
, M3 P :=

1

2

Z∑
i=1

σ
(i)
3 P

1 + σ
(i)
3

2

N± P :=
Z∑
i=1

σ
(i)
± P

1− σ(i)
3

2
, N3 P :=

1

2

Z∑
i=1

σ
(i)
3 P

1− σ(i)
3

2

U± P :=
Z∑
i=1

1 + σ
(i)
3

2
P σ

(i)
∓ , U3 P :=

1

2

Z∑
i=1

1 + σ
(i)
3

2
P σ

(i)
3

V± P :=
Z∑
i=1

1− σ(i)
3

2
P σ

(i)
∓ , V3 P :=

1

2

Z∑
i=1

1− σ(i)
3

2
P σ

(i)
3
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The Generators of SU(4)

To simplify notation, let O := {Q,Σ,M,N ,U ,V}.
We then note that for all X ∈ O:

[X+,X−] = 2X3

[X3,X±] = ±X±

Note also that

[Mi ,Nj ] = [Ui ,Vj ] = 0 ∀i , j ∈ {±, 3}.

In total there are 18 superoperators. It turns out that only 15 of them
are linearly independent.

They satisfy the commutation relations of SU(4).
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Basis States

The fundamental representation of the group SU(4), adapted to the
present case, is explicitly given by

u := |1 >< 1| , d := |0 >< 0|
s := |1 >< 0| , c := |0 >< 1|.

Note that Tr(u) = Tr(d) = 1 and Tr(s) = Tr(c) = 0. (The analogy
to the SU(4) quark model is obvious.)

Let us now construct the higher-order representations. For the
configuration uα dβ sγ cδ (with α+β+ γ+ δ = Z ), these are given by

PY = SY (uα dβ sγ cδ).

The symmetrizer SY makes sure that the state has symmetry type Y .
SY is the product of 2-particle symmetrizers and anti-symmetrizers.
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Fully Symmetrical States

The most important states are the fully symmetrical states. They can
be characterized by three quantum numbers. We choose the
eigenvalues of Q2 (i.e. q(q + 1)),Q3 (i.e. q3) and Σ3 (i.e. σ3).

The states are then represented by P
(Z)
q,q3,σ3 . Here are some examples:

P
(3)
3/2,3/2,0 = S (u3) = u3 = |111 >< 111|

P
(3)
1,1,1/2 = S (u2s) =

1

3
(u2s + usu + su2)

=
1

3
|111 > (< 110|+ < 101|+ < 011|) .

Applying Q− to P
(3)
3/2,3/2,0, we obtain

|011 >< 011|+ |101 >< 101|+ |110 >< 110| = 3P
(3)
3/2,1/2,0.
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Dimension of the Basis

For the fully symmetrical subspace, we obtain:

DGDS(Z ) =
1

6
(Z + 1)(Z + 2)(Z + 3)

This has to be compared to 4Z if one proceeds by “brute force”.

Note that the proposed states generalize the well-known Dicke states
in a natural way. This is why we have chosen the term “Generalized
Dicke States” (GDS) for them.
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Solving Quantum Master Equations

The quantum master equation

Ṗ = −B

2
(1− s)

Z∑
i=1

[σ
(i)
+ σ

(i)
− P + P σ

(i)
+ σ

(i)
− − 2σ

(i)
− P σ

(i)
+ ]

− B

2
s

Z∑
i=1

[σ
(i)
− σ

(i)
+ P + P σ

(i)
− σ

(i)
+ − 2σ

(i)
+ P σ

(i)
− ]

can be compactly expressed as follows (with τ := B t):

dP

dτ
= [−Z/2 + (1− s) Q− − (1− 2s) Q3 + s Q+] P

This equation has the formal solution:

P(τ) = e−Z/2 τ e((1−s) Q−−(1−2s) Q3+s Q+) τ P(0)
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Solving Quantum Master Equations

We now use the BCH-formula to factorize the second exponential:

P(τ) = e−Z/2 τ eAs(τ)Q+ eBs(τ)Q3 eCs(τ)Q− P(0)

with

As(τ) =
s f (τ)

1− s f (τ)

Bs(τ) = −τ − 2 log(1− s f (τ))

Cs(τ) =
(1− s) f (τ)

1− s f (τ)

and
f (τ) := 1− e−τ .
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Two Methodological Remarks

1 Include the unitary dynamics. If the Master equation also contains a
unitary dynamics (represented, e.g., by the Tavis-Cummings
Hamiltonian), then the atomic part of the corresponding terms can
also be expressed in terms of the SU(4)-generators. To account for
the field-part, one can use the damping basis of Briegel and Englert
which has a similar motivation as the GDS. This leads to very
efficient computations for practical applications.

2 Generality of the proposed account. Note that the derivation of the
SU(4)-symmetry does not depend on the derivation of the Lindblad
equation. The proposed methodology works whenever the Liouville
operator can be expressed in terms of the SU(4)-generators. This is
typically the case when the underlying dynamics of the quasi-spin
system is Markovian.
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IV. Speculation: Is the Lindblad Equation Fundamental?

Stephan Hartmann (MCMP) Open Quantum Systems SSLPS Annual Meeting 2018 33 / 54



What do we mean by a fundamental theoretical
description?

Some necessary conditions:

1 Let S be a set of phenomena that is accounted for by two different
theories, viz. TF and TP . TF is more fundamental than TP for S if it
is less idealized than TP .

2 The fundamental dynamical laws describing a system’s evolution
should not depend for their validity on the system’s initial state.

3 The ability to uncover the causal structure of a system through
empirical testing is a fundamental demand one might make on any
physical theory.
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Is the Lindblad Equation Fundamental?

S. Weinberg (2017):1

“Obviously, probabilities must all be positive numbers, and add up to 100
percent. . . . ”

There is another requirement, satisfied in ordinary quantum
mechanics, that in entangled states the evolution of probabilities during
measurements cannot be used to send instantaneous signals, which would
violate the theory of relativity. Special relativity requires that no signal can
travel faster than the speed of light. When these requirements are put
together, it turns out that the most general evolution of probabilities
satisfies an equation of a class known as Lindblad equations . . . ”

1Steven Weinberg, “The Trouble with Quantum Mechanics,” The New York Review
of Books, Jan. 19, 2017.
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Is the Lindblad Equation Fundamental?

“. . . The class of Lindblad equations contains the Schrödinger equation of
ordinary quantum mechanics as a special case, . . . ”

but in general these
equations involve a variety of new quantities that represent a departure
from quantum mechanics. These are quantities whose details of course we
now don’t know. Though it has been scarcely noticed outside the
theoretical community, there already is a line of interesting papers, going
back to an influential 1986 article by [GRW], that use the Lindblad
equations to generalize quantum mechanics in various ways.”

Steven Weinberg, “The Trouble with Quantum Mechanics,” The New York Review of

Books, Jan. 19, 2017.
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Is the Lindblad Equation Fundamental?

On this view, the Lindblad equation (and not the Schrödinger
equation or the Dirac equation) is fundamental.

The density operator ρ is the fundamental quantity, and not the wave
function ψ.

A stochastic (i.e. indeterministic) dynamics is fundamental. It
suggests that there is always a general non-reducible level of noise in
the background of all systems (including the universe as a whole if we
describe it quantum mechanically).

This has interesting consequences (to be explored) for the debate
about the interpretation of quantum mechanics.

However, no-signalling is insufficient to yield quantum theory

Popescu-Rohrlich boxes
What does Weinberg mean?
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Two Not Uncontroversial Assumptions

Recall that the general dynamical equation

ρ̇ = Lρ

has the formal solution

ρ(t) = Φt ρ(0).

Impose three conditions on the map Φt :

1 Φt is linear.

2 Φt is completely positive.

3 Φt has the semigroup property, i.e. Φs Φt = Φs+t and Φ0 = 1.

⇒ Forces Φt to be of Lindblad form.
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Complete Positivity

Φt : maps density operators to density operators.
Density operators are positive operators.
∴ Φt must be a positive map.

Complete positivity (CP):

Require Φt to be positive for all ρS

Even in the presence of a ‘witness’
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Complete Positivity

Φt : maps density operators to density operators.
Density operators are positive operators.
∴ Φt must be a positive map.

Complete positivity (CP):

Require Φt to be positive for all ρS

Even in the presence of a ‘witness’

ρSW

W : ‘witness’ system. S ,W entangled, don’t interact.

Φt : evolution of S I : evolution (trivial) of W

Require that: ρSW
Φt⊗I−−−→ ρ′SW be positive for W of any dimension
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Not Completely Positive Maps

Cuffaro & Myrvold (2013):2

Φ⊗ I should not be formally required to be positive for all ρSW

S ,E initially entangled: ρS = trE (ρSE ) not pure!

‘Impossible’ states of S : ΦρS � 0,

‘Possible’ states of S : ΦρS ≥ 0

‘Not completely positive evolution’: misleading terminology:

Φ : Partial-CP map w/ NCP extension
Φ : CP with respect to its domain of definition

2MEC & and Wayne C. Myrvold (2013), “On the Debate Concerning the Proper
Characterisation of Quantum Dynamical Evolution,” Philosophy of Science 80,
1125–1136.
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Complete Positivity: Upshot

1 One can continue to regard CP dynamics as fundamental despite the
pragmatic usefulness of NCP maps in certain situations.

2 The use of NCP maps need not be taken to violate the fundamental
requirement that the validity of the dynamical laws describing a
system’s evolution be independent of the system’s initial state.
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Markov

Recall:

Imposing three conditions on the map Φt forces it to take Lindblad form:

1 Φt is linear (uncontroversial).

2 Φt is completely positive (we argued that this is reasonable).
3 Φt has the semigroup property, i.e. Φs Φt = Φs+t and Φ0 = 1.

This condition amounts to requesting that the (fundamental) dynamics
is Markovian.
Question: Is this a reasonable requirement?
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Markov

The Markov condition naturally generalizes deterministic causal talk:

The current state yields the probability distribution for the subsequent
state.

It is unclear how a process can be thought of as causal without it.

It realizes our ‘fundamental demand’ on any physical theory that it allow
for uncovering the causal structure of a system (at least at the
surface-level) through empirical testing:

We need to be able to say how our quantum experiments are related
to one another and talk about the causal structure associated with
the results of experiments in different labs.

At any rate it is a feature of how we currently practice (quantum)
physics, even if it could be argued to not be strictly necessary.
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Quantum Causal Modelling

This demand can be satisfied within quantum theory:

References:
1 Fabio Costa & Sally Shrapnel (2016): “Quantum Causal Modelling,”

New Journal of Physics 18, 063032.

2 John-Mark A. Allen, Jonathan Barrett, Dominic C. Horsman, Ciarán
M. Lee, and Robert W. Spekkens (2017): “Quantum Common
Causes and Quantum Causal Models,” Physical Review X 7, 031021.

3 Sally Shrapnel (Advance Access): “Discovering Quantum Causal
Models,” British Journal for the Philosophy of Science.
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Quantum Causal Modelling: Motivation

The starting point of these investigations is the deterministic
interventionist framework of Pearl, Glymour, Spirtes and Scheines, in
which the Markov Condition and the Faithfulness Condition (no
fine-tuning) are both required to allow for causal discovery.

To apply the framework to quantum theory (and to deal with the
violation of the Bell inequalities), people suggested to give up either
Markov or Faithfulness. This may appear to be forced and unnatural
and the question is whether there is other ways to provide a quantum
causal modeling framework that is inherently indeterministic.

Question: Can the interventionist framework be generalized to a
quantum context?
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Quantum Causal Modelling: The Idea

Uses an open-systems framework.

Events are associated with ‘local laboratories’ represented using
formalism of quantum operations.

Causal influences identified with signalling influences.

Interventions modelled as quantum ‘instruments’, i.e. particular sets
of quantum operations.

Signalling: The probability of an event can be influenced by some
intervention.
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Quantum Causal Modelling: Results

1 It is always possible to determine the structure of a Markovian
quantum causal model from experimental observations.

2 Fine-tuned models receive vanishingly small probability.

3 Causally ordered non-Markovian models can always be reduced to
Markovian models through the introduction of latent laboratories.
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Upshot: Motivation for Markov

The proposed framework naturally generalizes determinism to the
case of an irreducibly probabilistic theory.

Assuming it allows one to realise the ‘fundamental demand’ on a
theory that it allow us to probe the causal structure of the world (at
least at the surface level) in the context of quantum experiments.

Within the interventionist frameworks of (Costa & Shrapnel 2016,
Allen et al. 2017, Shrapnel 2018), it allows one to describe
non-Markovian processes as reducible to Markovian ones.
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V. Outlook and Things to Do
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Open Questions

In more recent work, Weinberg suggested a way to test the hypothesis
that the Lindblad equation is fundamental using atomic clocks.

It might be interesting to derive Bohm-style equations in the
open-systems framework. Perhaps there are testable consequences?

We need more investigations with respect to the status of the Markov
assumption as a necessary condition for the concept of cause.

Not all of the three necessary conditions on fundamentality we
expressed have the same status. The motivation for Markov seems to
bring in methodological issues related to representation; less so for the
first two. This needs further exploration. See, for example:
Woodward (2015).†

†Woodward (2015), “Methodology, Ontology, and Interventionism,” Synthese 192,

3577–3599.
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Outlook

1 We have developed the “open systems view” of quantum mechanics.

2 It should be taken more seriously as a fundamental account of
quantum dynamics and we offered some speculations as to how one
might do so.

3 Taking open systems seriously will have implications for the
interpretation of quantum theory which should be explored.

4 We have also shown that the “open systems view” has computational
advantages in some contexts.

5 Finally, we identified a new permutation symmetry – SU(4) – that
holds in open quantum systems comprising (fermionic) two-level
subsystems. Studying the states of mixed symmetry may have
observable consequences.

The philosophy of open quantum systems is only at the beginning.
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Thanks for your attention!
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